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Mitochondrial DNA as a Molecular Clock 
Student Version 

 
 Maria Abilock Frank H. Stephenson, Ph.D. 
 BABEC Applied Biosystems 
 
We gratefully acknowledge David Micklos and the staff of the Dolan DNA Learning Center at Cold Spring Harbor 
Laboratory for their generous help. Some materials for this exercise were adapted, by permission, from the 
Genomic Biology: Advanced Instructional Technology for High School and College Biology Faculty laboratory 
manual, Cold Spring Harbor Laboratory, 1999 and the Genetic Origins website at http://geneticorigins.org. 
 

Introduction 
 
The DNA of every species on Earth is susceptible to change. Base pairs are lost. Base pairs are gained. One base 
pair can be substituted for another. We call these changes in DNA mutations or single nucleotide 
polymorphisms (SNPs) and they can arise by different mechanisms. By allowing organisms to adapt to 
environmental changes, mutation drives the steady and inevitable march of evolution. 
 
Because a mutation within a gene can change the amino acid sequence of the encoded protein, many mutations 
spell disaster for that gene’s function and potentially for the organism that bears it. Almost all genomes, however, 
from those of viruses to humans, carry segments of DNA that neither directly code for a protein nor are involved in 
the control of gene expression. A mutation occurring within such regions can usually be tolerated by the organism 
since it will most likely not impart any disadvantage to its survival nor impair its ability to reproduce. 
 
Recently, forensic scientists, anthropologists, and evolutionary biologists have looked at mutations within the DNA 
of the mitochondrion to explore differences between peoples and populations. Mitochondria are found in all 
eukaryotic cells and are believed to have once been free-living bacteria that were assimilated early in evolution. 
Mitochondria divide independently of the cell and can be found in great numbers.  They provide the cell in which 
they reside with the genes needed for the synthesis of the energy-carrying molecule ATP. Each mitochondrion 
contains several copies of its own circular genome and each cell may contain hundreds of mitochondria.    
 
Because of its abundance, mitochondrial DNA has become a target for those scientists who do not have a ready 
supply of blood, bodily fluids, or tissue to work with but who still need to examine differences between people at the 
molecular level. Whether it is the skeletal remains of a Neandertal or a trace amount of hair left at the scene of a 
crime, where intact genomic DNA might be hard to come by, mitochondrial DNA can often be readily recovered. 
 
The mitochondrial genome is 16,569 bp in length and contains 37 genes. Within its structure, however, there is a 
1200 base pair non-coding segment, called the control region, carrying the genetic signals needed for replication 
and transcription. Since much of this DNA segment is not vital to the survival of the mitochondrion or the host cell, it 
is free to accumulate mutations. By studying the number and variety of base changes within this area, geneticists 
can determine the relatedness between individuals. Using the mutation rate within the mitochondrial control region 
as a “molecular clock,” evolutionists can plot the course that hominid evolution has taken. 
 

Mitochondrial DNA Replication 
 
When thinking about the human genome and all the traits that make us what we are tucked away within those six 
billion base pairs, it is easy to forget that all other cells in our body contain another genome, that of the 
mitochondrion. In some ways, mitochondrial DNA resembles the small circular pieces of DNA called plasmids 
found in bacterial cells. Like a plasmid, mitochondrial DNA is circular with a genome a fraction of the size of that of 
its host cell. Also, like a plasmid, there are multiple copies within each cell. Some cells in the human body carry 
thousands of mitochondria, and therefore contain thousands of copies of the mitochondrial genome. Because our 
bodies are composed of trillions of cells, with hundreds or thousands of mitochondria present in each cell, our 
bodies may contain more than 5 quadrillion (5,000,000,000,000,000) copies of the mitochondrial genome. A great 
deal of DNA replication has taken place to reach the adult body’s full complement of mitochondrial genomes! 
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Replication of mitochondrial DNA proceeds in the following manner: 

 
                                   A                                                 B 

Replication of mitochondrial DNA begins on only one strand within the non-coding “control” region. As this strand 
is replicated, the opposite strand of the original DNA duplex is displaced and forms a single-stranded loop 
(hence the name “D-loop” for Displacement loop in Figure A). If the mitochondrion is not committed to the 
replication of its genome, copying of the non-displaced strand stops close to the protein-encoding boundary 
(Figure B). The displaced strand is then broken down and the replication process begins again displacing a 
single strand in the process. These events are repeated again and again until a signal is received that commits 
the entire molecule to replication. The segment you will amplify by PCR is within the D-loop sequence.  

 
                                 C                                                D 

Once the signal is received to replicate the entire genome, replication continues around the circular molecule, 
increasing the size of the displaced strand (Figure C). When replication has proceeded approximately two-thirds 
of the way around the molecule, replication begins on the displaced strand (Figure D) until two new circular 
genomes are created. 
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Setting the Molecular Clock 
 
A species is defined as a group of organisms that are capable of interbreeding to produce viable, reproductive 
offspring. New species can arise when members of a population separate to form their own breeding group within a 
new environment that demands of its inhabitants a unique set of survival skills. As the separated group struggles to 
fill a new and different ecological niche, the genes that provide individuals an advantage in the competition to 
flourish and mate are selected for and passed on to the next generation. Those individuals carrying genes that do 
not provide a selective advantage may neither survive into adulthood nor mate. Their genes are lost to the 
population.  
 
A population’s ability to adapt to a new environment is driven by the process of natural selection. Mutation makes 
natural selection possible. Mutation alters genes, destroying or changing their function. Mutation molds the ability of 
members of a species to survive under a defined set of conditions. Eventually, during the process of adaptation and 
over many generations, enough mutations accumulate within the separated population group that its individuals are 
no longer capable of interbreeding with members of the original population. This marks the birth of a new species. 
The longer two species diverge from each other, the greater the number of mutational differences there will be 
between them. 
 
A clock measures the passage of time. Assuming that mutations occur at a constant rate, the accumulation of 
mutations in a DNA segment can be used as a “molecular clock” to measure the passage of time. In this case, the 
greater the number of mutations, the greater the amount of time passed. For example, if a new mutation appears in 
a defined region of DNA at a rate of one every 100,000 years, then after 500,000 years, 5 mutations will likely 
accumulate.  
 
In this laboratory exercise, you will isolate mitochondrial DNA from cheek cells and amplify a 440 base pair 
segment of the control region by PCR. You will analyze the DNA sequence of the PCR product to reveal 
differences between you and the other students in your class. You can compare your sequence with those of the 
“Ice Man,” “Lake Mungo Man,” and other long-dead humans. How does your sequence compare to those of 
chimpanzee and Neandertal? Could you and other modern humans have arisen from Neanderthals or did we 
evolve separately? If we evolved separately, at what point in time did modern humans and Neanderthals diverge on 
the evolutionary tree? Could Neanderthals have contributed to our gene pool? These are all questions you will 
investigate. 
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Mitochondrial DNA and its Role in Human Ancestry 

 
An ancestral marker is a mutation that occurred in the mitochondrial DNA (mtDNA) a long time ago.  Although 
there are several different types of mutations, the type most commonly found in mtDNA is called a single 
nucleotide polymorphism (SNP).  A SNP mutation occurs when a single nucleotide is replaced with a different 
nucleotide.  SNPs are very common in the D-Loop, described above.  This is because the D-Loop, also called the 
hypervariable region or control region, does not contain actual genes.  Instead, it contains important binding 
sites for DNA replication and transcription.  Therefore, this region can tolerate a greater mutation rate than the rest 
of the mitochondrial genome, where a mutation could potentially be lethal.  Inherited non-lethal mutations are 
largely located in this region. 
 
mtDNA has a very unique inheritance pattern which differs from all the other types of DNA in our body.  It is 
inherited only from your mother and does not mix with any genes from your father.  Therefore, it is not subject to 
genetic recombination, the process by which genes from two parents are mixed and shuffled before they are 
transmitted to offspring.  This means that one’s mtDNA is the same as the mtDNA in one’s mother’s cells, and the 
same as in one’s mother’s mother’s cells.  This mtDNA inheritance pattern goes all the way back to hundreds, even 
thousands of generations ago through the maternal line. 
 
Therefore, you have a unique set of mutations in your mtDNA and they hold information about your maternal 
ancestry.  Since these mtDNA mutations do not mix with genes from the father's line, the only changes that arise to 
mtDNA are due to SNPs.  When one of these mutations occurs, it acts as an ancestral marker, or a time-and-date-
stamp, because it is passed on to all future generations.  Therefore, we can look at the SNPs in mtDNA to learn 
about deep ancestry, which is ancient ancestry from tens of thousands of years ago.  Mitochondrial genes can be 
used to trace lineage all the way back to when the first ancestors came out of Africa.   
  
When mtDNA is sequenced, one can determine which specific SNPs are present.  These SNPs give information 
about one’s haplotype.  Haplotype originates from the word haploid, which describes cells with only one set of 
chromosomes, for example a sperm or egg, and from the word genotype, which refers to the genetic makeup of an 
organism.  One’s haplotype is inherited from a single parent, as opposed to one’s genotype which is inherited from 
both parents.  A haplogroup is a group of people with similar haplotypes, or ancestral markers, and they share a 
common ancestor.  Haplogroups represent ancient family groups that arose tens of thousands of years ago.  
  
mtDNA research is very active and has identified 30 defined mtDNA haplogroups present today.  This  number may 
continue to change.  All people living today can trace their maternal ancestry back to one of these haplogroups.  
Population geneticists study inheritance patterns of mtDNA ancestral markers.   They have been able to trace 
humans back to origins in Africa and have mapped their subsequent spread and migration across the globe.   
  
In this laboratory exercise, you will have the opportunity to determine your mtDNA haplogroup and find your place 
in a branch of the human family tree. Below is a map of the major mtDNA haplogroups indicating the time, in 
thousands of years ago, that they arrived in the region. 
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Illustration of the Polymerase Chain Reaction 
 
Figure 1. The First Four Cycles of the Polymerase Chain Reaction. 
 

First Cycle of PCR Second Cycle of PCR 
 

Third Cycle of PCR 
 

Fourth Cycle of PCR 
 

 
An excellent animated tutorial showing the steps of PCR is available at the DNA Learning Center website: 
http://www.dnalc.org/ddnalc/resources/pcr.html 
 
Note: You will need Macromedia Flash plug-in to view this online and to download the animation files to 
your computer. 
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Laboratory Exercise 
 
The protocol outlined below describes a procedure for isolating DNA from cheek cells. In the first step, you will rinse 
your mouth with a salt solution. This step typically dislodges hundreds of cells from the cheek epithelium. An aliquot 
of the mouthwash solution is centrifuged to collect the dislodged cells, which are then resuspended in a small 
volume of saline. The resuspended cells are then added to a solution of Chelex® to remove any metal ions (such 
as magnesium) which might promote degradation of your genomic DNA. Magnesium (and other metal ions) can act 
as cofactor for DNA-degrading nucleases present in saliva and the environment. The Chelex®/cell sample is then 
boiled to break open the cells. Since the sample is heated at a high temperature, the DNA, following this step, will 
be in a single-stranded form. The sample is then centrifuged briefly to collect the Chelex® and an aliquot of the 
supernatant containing released DNA is used for PCR. 
  
Objectives - student should be able to: 

1. Successfully isolate DNA from cheek cells 
2. Prepare a PCR reaction for amplification of the mitochondrial D-loop. 

 

 

Important Laboratory Practices 

a. Add reagents to the bottom of the reaction 
tube, not to its side. 

b. Add each additional reagent directly into 
previously added reagent.  

c. Do not pipet up and down, as this 
introduces error. This should only be done 
only when resuspending the cell pellet and not 
to mix reagents. 

d. Make sure contents are all settled into the 
bottom of the tube and not on the side or cap of 
tube. A quick spin may be needed to bring 
contents down. 

 
 
 

a. Pipet slowly to prevent contaminating the 
pipette barrel. 

b. Change pipette tips between each delivery. 
c. Change the tip even if it is the same reagent 

being delivered between tubes. Change tip 
every time the pipette is used! 

 
 

 
 
 

Keep reagents on ice. 
 
 

Check the box next to each step as you complete it.  
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Place a check mark in the box as you complete each step. 
 

DNA Preparation Using a Saline Mouthwash 
1. Vigorously swirl 10 mL of saline solution in your mouth for 30 

seconds.  
 
Note: The saline solution is a 0.9% NaCl solution, the salt 
concentration of your blood plasma. 
 
 

 
 
 
 
 
 
 
 

 
                                    

2. Expel saline into a cup and swirl to mix the cells. 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

3. Label a 1.5 mL microfuge tube with you PIN. 
 
Note: A PIN (personal identification number) can be any 
combination of 2–3 numbers or letters that can uniquely 
identify you. 
 
 

 
 
 
 
 
 
 
 

4. Transfer 1000 µL to 1500 µL (1 mL to 1.5 mL) of the 
saline/cell suspension into the labeled microfuge tube.  

 
 
 

 
1–1.5 mL saline 

 

5. In a microcentrifuge, spin your saline cell suspension for 1 
minute to pellet the cells. Be sure to use another student’s 
sample as a balance. 

  
Note: Centrifuge speed should be set to 10,000 x g (10,000 
rpm). 
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6. Observe our cell pellet at the bottom of the tube. If you do not 
have one, you may need to start over with another 1–1.5 mL 
saline rinse.  

 
Pour off the supernatant into your cup, being careful NOT to  
lose your cell pellet. 

 
Note: There will be about 100 µL of saline remaining in the 
tube after you pour.  

 
 

 
 

7. Check to make sure you can see your cell pellet and that 
there is about 100 µL of saline covering it. You may need to 
add more saline to get up to about 100 µL. 

 
       Rack or flick tube to mix, which will “resuspend” the cell and  

make an evenly mixed solution.  
 

Note: You can also “rack” your sample. Be sure the top of 
the tube is closed, hold tube firmly at the top, and pull it 
across a microfuge rack 2–3 times.  
 

 
Resuspend cells in ≈100 µL saline 

 

8. Obtain a tube of Chelex from your instructor. Label with your 
PIN.  

 
 
 
 
 
 

 
 

9. Withdraw 50 µL of your cell suspension from step 7 and add 
it to the tube containing Chelex.  

 
Note: Do not pipet up and down at this step, as it will clog 
the tip with Chelex beads.  

 
 
 
 
 
 
 
 

 
 

10.  Heat block version: If your Chelex (with the cell 
suspension) is in a normal 1.5 mL microfuge tube, take your 
tube to a heat block station. Slide a cap lock onto the tube lid 
and place it in the heat block for 10 minutes. Keep track of 
your tube in the heat block.  

 
 

 
 

!
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PCR tube version: If your Chelex (with your cell 
suspension) is in a tiny PCR tube, follow your teacher’s 
instruction on placing it in a thermal cycler at 99°C for 10 
minutes. Record the location of your tube.  

 
 

 
 

11. After heating, gently remove the cap lock and open the tube 
to release the pressure. Caution: the tube will be hot! Close 
and then rack or shake the tube well and place it in a 
centrifuge to spin for 1 minute.  

 
 
 
 

 
 

12. Obtain another clean microfuge tube and label it with your 
PIN. Also write “DNA” on this tube.  

 
 

 
 

13. Holding your tube at eye level, use a P-200 to withdraw 50 µL 
of supernatant from the Chelex/DNA tube to the new, labeled 
tube. Be sure NOT to transfer any Chelex beads.  

 
Note: This is your isolated “DNA” sample. 
 
 

 
 

14. Have someone check the “DNA” tube to be sure that no 
Chelex beads were transferred into it. There should be NO 
Chelex beads present, as they will interfere with the PCR.  

 
 
 

 
 

15. Place your DNA tube in the class rack. Your teacher will 
refrigerate your isolated DNA until you are ready to prepare 
your PCR amplification.  
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Polymerase Chain Reaction 

1. Obtain a tiny PCR tube. Label it with your PIN number, just 
under the lip. 

 
Note: Keep our PCR tube on ice when setting up the 
reaction.  

 
 

2. Pipet 20 µL of Master Mix into your PCR tube.  
 
 
 

 
    20 µL of 
    Master Mix 

3. Change your pipet tip and add 20 µL of Primer Mix into your 
PCR tube.  
 

 

 
   20 µL of 
   Primer Mix 
 
 
 

4. With a new pipet tip, add 10 µL of your extracted DNA into 
your PCR tube.  

 
       What is the total volume in your tube? _________ µL 

 
Note: Make sure that all the liquids are settled into the 
bottom of the tube and not on the side of the tube or in the 
cap. If not, you can give the tube a quick spin in the 
centrifuge. Do not pipette up and down; it introduces error.  
 

 
 
     10 µL of 
      DNA 
 

5. Setting up the controls: 
 

a. Two students will be asked to set up the positive 
control reactions (+C) for the class. They will use the 
positive control DNA provided in the kit. There should 
be enough +C PCR sample for one lane on each gel.  

b. Another two students will set up negative control 
reactions for the whole class (–C). They will use sterile 
water. There should be enough –C PCR sample for 
one lane on each gel. 

 
Control Master 

Mix 
Primer 

mix DNA 

+ 20 µL 20 µL 10 µL  +C DNA 

- 20 µL 20 µL 10 µL sterile H20 

 
 
 

6. Check the volume of your PCR tube by comparing it to a 
reference PCR tube with 50 µL in it. It should be near the 
thermal cycler, set by your teacher.  

 
Note: If the volume of your tube does not match, see your 
instructor to troubleshoot. You may need to set up the 
reaction again.  
 

 
 
 
 
 
 

                  
            PCR Tube           Reference Tube  

50 
50#μL#
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7. Place your reaction into the thermal cycler and record the 
location of your tube on the grid provided by your teacher.  

 
 
 
 
 

 

8. The cycling protocol for amplification of mtDNA PCR: 
 
1) 95°C hold for 10 minutes 
2) 30 cycles of: 
             94°C for 30 seconds 
             52.5°C for 30 seconds 
             65°C for 1 minute 
3) 72°C hold for 10 minutes 
4) 4°C hold, ∞ infinity 
 

 
Thermal cycler Instrument displaying 

program parameters 
 

 

1 2 3 4 5 6 7
A 1123 828

B 1027

C 6777 9305



 

mtDNA PCR and Sequencing  
   Student Guide 

Fall 2012 
 

12 

 
Agarose Gel Electrophoresis 

 
To determine whether or not the mtDNA PCR product amplified, you will need to visualize the products of your 
amplification. This will be done using a process called gel electrophoresis in which electric current forces the 
migration of DNA fragments through a special gel material. Since DNA is negatively charged, it will migrate in an 
electric field towards the positive electrode (Figure 2). When electrophoresed through a gel, shorter fragments of 
DNA move at a faster rate than longer ones.  
 

Figure 2. Side view of an 
agarose gel showing DNA 
loaded into a well and the 
direction of DNA fragment 
migration during 
electrophoresis. 

 
 
The gel material to be used for this experiment is called agarose, a gelatinous substance derived from a 
polysaccharide in red algae. When agarose granules are placed in a buffer solution and heated to boiling 
temperatures, they dissolve and the solution becomes clear.  A comb is placed in the casting tray to provide a mold 
for the gel. The agarose is allowed to cool slightly and is then poured into the casting tray. Within about 15 minutes, 
the agarose solidifies into an opaque gel having the look and feel of coconut Jell-O™.  The gel, in its casting tray, is 
placed in a buffer chamber connected to a power supply and running buffer is poured into the chamber until the gel 
is completely submerged. The comb can then be withdrawn to form the wells into which your PCR sample will be 
loaded. 
 
Loading dye is a colored, viscous liquid containing dyes (making it easy to see) and sucrose, Ficoll, or glycerol 
(making it dense). To a small volume of your total PCR reaction, you will add loading dye, mix and then pipet an 
aliquot of the mixture into one of the wells of your agarose gel. When all wells have been loaded with sample, you 
will switch on the power supply. The samples should be allowed to electrophorese until the dye front (either yellow 
or blue, depending on the dye used) is 1 to 2 cm from the bottom of the gel. The gel can then be moved, stained 
and photographed.   
 

Calculations for Preparing 2% Agarose Gel 
 
You will need a 2%, mass/volume agarose gel for electrophoresis of your PCR products.  If your agarose gel 
casting trays holds 50 mL, then how much agarose and buffer would you need? The definition of m/v % in biology 
is grams (mass) / 100 mL (volume). Therefore, for 2% agarose, it will be 2 g /100 mL buffer. 
 
Step 1: Calculate the mass of agarose needed for 50 mL total volume of agarose solution. 
 
 
 
 
 
 
Step 2: Calculate the amount of buffer needed to bring the agarose solution to 50 mL. By standard definition, 1 
gram of H2O = 1 mL of H2O. The amount of buffer for the 2% agarose solution will be 49 mL (50 mL – 1 mL (1 gram 
of agarose)).  
 
 
 
 
 
 

2 g               X g 
        =       X = 1 gram 

100 ml         50 ml 
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Electrophoresis of Amplified DNA 

1.  Retrieve your PCR tube and place it in a balanced configuration in 
a microcentrifuge. Spin it briefly (10 seconds) to bring the liquid to the 
bottom of the reaction tube.  
 
Note: Make sure the centrifuge adapters are in place before 
putting the tiny PCR tube into the centrifuge rotor. 

 
 

2.  If you are NOT performing DNA sequencing:   
            Add 5 µL of loading dye to your PCR tube. 
     If you plan to sequence your DNA: 
            Remove 20 µL of your PCR sample and dispense into a new                         
            tube.  Add 2 µL of loading dye to it. 
 
 
Note:  your PCR sample can’t contain loading dye for sequencing. 
 
 

 

3. Carefully load 15 to 20 µL of the DNA/loading dye mixture into a 
well in your gel. Make sure you keep track of what sample is being 
loaded into each well. 
 
Note: Avoid poking the pipette tip through the bottom of the gel 
or spilling sample over the sides of the well. Use a new tip for 
each sample. 

 
 

4. One student (or the instructor) should load 5-10 µL of 100 bp ladder 
(molecular weight marker) into one of the wells of each gel. 
 
 

 

5. When all samples are loaded, attach the electrodes from the gel box 
to the power supply. Have your teacher check your connections and 
then electrophorese your samples at 150 Volts for 25–40 minutes. 
 
 

 
 

6. After electrophoresis, the gels will be ready to stain and photograph. 
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Staining and Photographing Agarose Gels 
 
 
The PCR products separated on your agarose gel are invisible to the naked eye. If you look at your gel in normal 
room light, you will not be able to see the amplified products of your reaction. In order to “see” them, we must stain 
the gel with a fluorescent dye called ethidium bromide (EtBr). Molecules of ethidium bromide are flat and can 
intercalate, or insert, between adjacent base pairs of double stranded DNA (Figure 3). When this interaction 
occurs, they take on a more ordered and regular configuration causing them to fluoresce under ultraviolet light 
(UV). Exposing the gel to UV light after staining, allows you to see bright, pinkish-orange bands where there is DNA 
(figure 4). 
 
   
  Figure 3. Ethidium bromide    
  molecules intercalated between  
  DNA base pairs. 
 
 
 
 
 
 
 
 
Your teacher may stain your agarose gel and take a photograph for you so that you may analyze your PCR results. 
Gel staining is done as follows: 
 1. Place the agarose gel in a staining tray.  
 2. Pour enough ethidium bromide (0.5µg/ mL) to cover the gel.  
 3. Wait 20 minutes. 
 4. Pour the ethidium bromide solution back into its storage bottle.   
 5. Pour enough water into the staining tray to cover the gel and wait 5 minutes.  
 6. Pour the water out of the staining tray into a hazardous waste container and place the stained gel on a 
 UV light box.   
 7. Place the camera over the gel and take a photograph. 
 8. Check with your district on how to dispose of hazardous waste liquid and solids. 
 
 
CAUTION: Ethidium bromide is considered a carcinogen and neurotoxin. Always wear gloves and 
appropriate PPE (personal protective equipment) like safety glasses when handling.  Students should 
NEVER handle EtBr.   
 
CAUTION: Ultraviolet light can damage your eyes and skin. Always wear protective clothing and UV safety 
glasses when using a UV light box. 
 
 
 Figure 4. After staining an agarose gel     
 with ethidium bromide, DNA bands are  
 visible upon exposure to UV light. 

 



 

mtDNA PCR and Sequencing  
   Student Guide 

Fall 2012 
 

15 

Mitochondrial D-loop PCR Amplification Results 
 
PCR amplification of the mitochondrial D-loop region using the primers for this protocol should produce a 440 bp 
product as shown in the figure below. 
 

 
 
Figure 4. Representation of an agarose gel containing 
a 100 bp ladder (leftmost lane) and lanes showing 440 
bp products from D-loop PCR amplification.  

 
 
Tape your gel photo in the space below.  Add observations and notes. 
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Submitting PCR samples for sequencing through CSU East Bay 

 
If you are submitting your PCR samples for sequencing through CSU East Bay, please continue on this page.  

 
   If you have received BigDye reagents and have made other sequencing arrangements, see the                

“Cycle Sequencing Supplement” on the BABEC website. 
 
1. Obtain a clear photos of your class gel results.  These 

photo is required for the processing of your samples at 
CSUEB.  Label the lanes using the same numbering 
system that you use for your PCR tubes. 

 
Note to teachers: 
If a student’s sample did not amplify, then you must skip 
that lane and continue numbering in sequential order.   
Do not send in any PCR samples that did not amplify, as 
there will not be any material to sequence. 
 

 
 
 
 
 
 
 
 
 
 
 

2. Spin down the original PCR tube.  With a fresh tip, remove 
10 µL of the PCR product and place in a new tube.   

 
 
 
 
 
 

 
 

 

3. Label the new tube with the corresponding number from 
the gel photo.   

 
Note to teachers:  
Remember: do not skip numbers! 

 

 
 

 
4. The contact person at CSU East Bay is Dr. Chris 

Baysdorfer.  Contact him via email at the time of shipment 
to confirm.   Use the following email address: 

 
       chris.baysdorfer@csueastbay.edu 
 
       Include the following class information:  
       - your name 
       - school 
       - number of samples 
       - class name (AP Bio, etc.). 
 
 

 
 

 
 

 
 
 
 
 

 

1             2      3 

!
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5. Package your samples and labeled gel photo in a zip-top 

plastic bag.  Place in a styrofoam box with a few cooler 
packs. 

 
 
 
 

 
  

 
 
 
 

6. Ship OVERNIGHT delivery to: 
 
      Professor Chris Baysdorfer 
      Department of Biological Sciences 
      California State University, East Bay 
      Hayward, CA 94542 
      Phone: (510) 885-3459 
 
 
IMPORTANT: Do not ship samples on Fridays. 
 

 
 

 
 
 
 
 
 
 

7. The sequences will be delivered to you via email.  This 
should take 5-7 business days, but confirm with Dr. 
Baysdorfer at time of shipment.  Samples are run free of 
charge! 

 

 

8. You will receive the sequences from CSU in the form of a 
“Trace File”.  They will have the same sample names that 
you submitted, but will end in “.ab1”.  The .ab1 files need a 
special software program to be opened.  Programs can be 
downloaded for free: 

 
For MAC 
http://www.mekentosj.com/science/4peaks 
 
For PC:  
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?c
md=catNavigate2&catID=600583&tab=Overview 
 
 

“4Peaks” for MAC 

 
 

“Peak Scanner” for PC 

 

9. Using these programs, you can visualize and edit  the color 
chromatogram of each sequence.  You can also export the 
sequences as text files, which will be needed for further 
analysis using the Sequence Server at the CSHL DNA 
Learning Center.  See instructions below, “Mitochondrial 
sequence comparisons”, starting on page 32. 

 
Note:  Feel free to contact the Manager of Education Programs 
at BABEC if you need help using these programs or exporting 
the text files.  Contact information can be found at 
www.babec.org 
 
 

 
Sequence chromatogram: 

 
 

Sequence text file: 
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Sequencing Activity One: 

Using the Sequence Server at the CSHL DNA Learning Center 
  
Objectives - student should be able to: 

1. View your class data in the Cold Spring Harbor Laboratory Sequence Server database. 
2. Perform pair-wise sequence alignments between diverse modern humans. 
3. Perform pair-wise sequence alignments between diverse modern humans and Neanderthals.  
4. Set the “molecular clock” based on the number of sequence differences between modern humans.  
5. Use a “molecular clock” to estimate when Neanderthals and modern humans diverged. 

 
The DNA Learning Center at Cold Spring Harbor Laboratory has developed a number of bioinformatics tools for 
student use.  Bioinformatics tools are computer programs used to help scientists make sense of biological data and 
solve biological problems.  You will be using the Sequence Server for three different activities to help you learn more 
about the origins of our species. 
 
In the following exercise, you will compare DNA sequence between individuals from several different population 
groups. You will first compare sequences between modern humans. This information will be used to set a 
“molecular clock”. You will then compare modern humans to Neanderthals to see if Neanderthals might have 
contributed to our gene pool. The molecular clock you derive will be used to determine when modern humans and 
Neanderthals diverged. In your final comparison, you will align modern human sequences to that of a chimpanzee 
to derive a new molecular clock. The molecular clocks will be used to estimate when modern humans first 
appeared. 
 
 

Mitochondrial DNA Sequence Comparisons 

1. Open up an Internet browser window. (This might 
be Internet Explorer, Safari, Firefox, or Netscape 
Navigator, etc.) 

 
 
 
 
 
  
 

2. In the address box, type in the following URL: 
http://www.bioservers.org/bioserver and press the 
Enter (or Return) key on the keyboard. The DNA 
Learning Center’s Bioserver main page will be brought 
up.      
 

 
 

3. You will want to use the “Sequence Server”.     
Click on the “REGISTER” button if you have not 
previously registered with Bioservers. Fill out the 
required information and then hit “SUBMIT.” If you 
are already registered, enter your username and 
password, then press “LOGIN.”   

 
 
 
 
 
 
 
 
 
 

 
 
 



 

mtDNA PCR and Sequencing  
   Student Guide 

Fall 2012 
 

19 

4. This will open the main workspace window.  Click 
on the red question mark in the top right corner   
of the page.  It will open up a page called “Using 
Sequence Server” in a separate window.  The 
instructions contained here can be referenced if 
you need more information about using this site.  

 
 
 
 
 
 
 
 

 
 
 

5. Click on the “DNA Sequence Server” page to bring 
it forward on the desktop. 

 
      Click on the “Create Sequence” box.  This is       
      where you can add your class data. 

 
 
 

6. You will need to upload each sequence individually.  
Type sequence name in “Name” box.  Then cut and 
paste the sequence from the text file into the 
“Sequence” box.  Then select “OK” at the bottom of 
the page. 

 

7. Go back to the main workspace window and you 
will see all the sequences you uploaded.  Click on 
the “Save” box next to one of the sequences. 

 

8. Click on “Add Group” and create a name for your 
class in the window that pops up.  Be sure to select 
“Public” for permissions.  Public viewing will allow 
students and others to look at the data without 
creating an account. 

 
       You will need to repeat these steps for each  
       individual sequence until the entire class data is  
       uploaded. 

 
 

9. You are now ready to analyze your class data 
as a group.  

 
       Go back to the main workspace window and  
       click on the “Manage Groups” box.  This will open  
       a new window. 
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10. In the upper right hand corner of the “Manage 
Groups” window is a scroll menu. If it isn’t already 
showing, select “Your Groups”. 

 
This will bring up a list of all the groups you have 
created in your account.  Use the scroll bars on the 
right side of the window to locate your class, then click 
the box to its left to select it.  Press “OK”. 
  
11. Go back to the “Manage Groups” window and in 

the upper right scroll menu, select “Ancient Human 
mtDNA”.   Click the box to the left of one or more of 
the six groups on the list. Press “OK” when 
finished. 

 
 
 
 
 
 
 
  
12. Your class data and several prehistoric humans’ 

data should now be added to your workspace. 
Select your sequence by using the scroll menu 
below your class name. Deselect all the check 
boxes on the left except for your sample and one 
prehistoric human of your choice.                       
Next to the “COMPARE” button below the 
Sequence Server icon, use the arrows to scroll to 
“Align:CLUSTAL W” then click the “COMPARE” 
button. 

 
 
 
 
 
 

 
 

13. Your sequence and the prehistoric human 
sequence you chose should align where bases are 
complementary. You may notice some yellow 
highlight regions, dashes and gray highlight regions 
with “N’s.” What do you think these indicate?  

 
Note: 
   yellow     =    mismatch 
   gray        =   “N” or unknown base 
   dashes   =    gaps due to insertions, deletions or           
                       sequencing errors 
 
 
 
 
 
 

 
 
 

!
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14. When you have examined the alignment to your 
satisfaction, go back to the main workspace 
window and press the “Clear” button to clear  your 
workspace.                                                         
Next, you will work with various diverse modern 
humans, Neanderthals, chimpanzee, and your 
classmates’ data to investigate your genetic origins. 

 

 

15. In the “Manage Groups” window, use the scroll 
menu to locate your class under the “Your Groups” 
option in the scroll bar. Select it by checking its 
box. 

 

 
16. Using the scroll menu again in the upper right 

corner of the “Manage Groups” window, locate and 
select “Modern Human mtDNA.”  Check all boxes 
in this window. 

 

 
17. Locate and select the “Neanderthal Human 

mtDNA” category from the scroll bar in the 
“Manage Groups” window. Check all boxes in     
this window. 

 
 
 
 
 
 
 
 
  
18. Select the “Non-Human DNA” category from the 

Manage Groups window. Click the box to the left of 
“Primate mtDNA (4 species).” Click on the “OK” 
button at the bottom of the window. This will place 
all selected DNA sequences onto the main 
workspace window. 

 
      Continue with the exercises listed on the next page. 
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Sequence Alignments 
 
You will perform a series of sequence alignments that will allow you to estimate a mutation rate and to calculate the 
timing of crucial events in human evolution.   Use the following guidelines for each comparison. 

• Identify a region spanning 200 bases where there is good alignment between the two sequences you are 
comparing. This region should contain few, if any, “N’s.”  

• Excluding N’s (in gray) and dashes that may occur at the beginning or end of the alignment, count how 
many yellow-highlighted base positions are found in the alignment. If you find a run of three or more 
dashes in a row, count such a run as a single nucleotide difference. 

• If you find a sequence that does not align for 200 bases, use a different sequence. 
Note to teachers: This is based on the assumption that it is more likely that a single event, rather than multiple, 
independent events, will lead to the insertion/deletion of 3 or more bases at a particular site.  
 
Follow the steps below to fill in the spaces in the chart that follows. 

1. Modern Human vs. Modern Human 
a. Select any two modern humans from the groups on your workspace.  Fill in the identifying information in 

the table. 
b. Compare these two individuals by ClustalW alignment.  Count the number of mismatches, or SNPs, and 

record this number in the table. 
c. Repeat steps “a” and “b” using different modern humans. 
d. Now compare two students in the class and fill in all the appropriate information in the table. 
e. Calculate the average number of SNPs for this group and record in the table. 

2. Modern Human vs. Neanderthal 
a. Select any African modern human and any Neanderthal to compare by ClustalW alignment.  Fill in the 

identifying information in the table. 
b. Compare these two individuals and record the number of SNPs in the table. 
c. Repeat steps “a” and “b” with any Asian modern human and any Neandertal. 
d. Repeat steps “a” and “b” again using any European modern human and any Neandertal. 
e. Now compare your (or another student’s) sequence with any Neandertal and record all appropriate 

information in the table. 
f. Calculate the average number of SNPs for this group and record in the table. 

3. Neandertal vs. Neanderthal 
a. Select Neanderthal #1 and Neanderthal #2 to compare by ClustalW alignment.  Record the number of 

SNPs in the table. 
b. Do the same with the other two combinations of Neanderthals. 
c. Calculate the average number of SNPs for this group and record in the table. 

4. Modern Human vs. Chimpanzee 
a. Select any modern human to compare with Chimp #2.  Fill in the identifying information in the table. 
b. Compare these two sequences by ClustalW alignment.  Count the number of SNPs and record this 

number in the table. 
c. Repeat steps “a” and “b” using different modern humans. 
d. Now compare your (or another student’s) sequence with Chimp #2 and record the number of SNPs 

along with the appropriate identifying information. 
e. Calculate the average number of SNPs for this group. 
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Student Data 
 

Sequence Server Clustal W Alignments: SNPs 

Modern Human vs. Modern Human Number of SNPs Your Average Class Average 
________________ vs. _________________   

~6 
________________ vs. _________________  
________________ vs. _________________  
Student _________ vs. Student __________  

Modern Human vs. Neandertal    
African ____________ vs. Neandertal # _____ ~18  

~18 
Asian _____________vs. Neandertal # _____ ~18 
European __________ vs. Neandertal # _____ ~19 
Student ___________ vs. Neandertal #____  

Neandertal vs. Neandertal    
Neandertal #1 vs. Neandertal #2 ~7  

~5 Neandertal #1 vs. Neandertal #3 ~4 
Neandertal #2 vs. Neandertal #3 ~4 

Modern Human vs. Chimpanzee    

_____________vs. Chimp #2   

~42 
_____________vs. Chimp #2  
_____________vs. Chimp #2  
Student ______ vs. Chimp #2  

 
 
Note to teachers: Since there are so many possible combinations to choose from when making these 
comparisons, the values you obtain in your class may be different than those given in this table. This can bring up a 
good discussion topic: How might these numbers vary depending on the samples (and groups) used for 
comparison? You may notice how small changes in the numbers can make a huge difference in the values 
calculated for the evolution divergence points.  
 
 
Note to teachers: After students complete the ClustalW alignments and calculate their averages, they will need to 
calculate the class averages before proceeding with the following questions. 
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Name________________________________________ 

        Date  _________________  Period_________________ 

 

Review Questions: Molecular Clocks 
 
1.  Calculating a molecular clock 
Archaeologists use a number of different techniques to estimate the age of fossils. These include radiocarbon 
dating, measuring changes in carbonates and tooth enamel brought about by exposure to radiation over time, and 
determining the age of the geological strata in which the fossil was found. By dating human fossils discovered in 
Africa, scientists estimate that modern humans first appeared approximately 150,000 years ago. Using this value 
and the class average number of differences for “Modern Humans vs. Modern Humans,” derive a molecular clock, 
or mutation rate, in years/mutation. Use the formula below: 
  
 

150,000 years 
       = _______ years/ mutation 
     _____ mutations 
 
 
2.  Did modern humans evolve from Neanderthals? 
Neandertal fossils have been discovered in Europe and the Middle East. Dating the fossils by radiocarbon decay 
suggests that Neanderthals inhabited the European continent as recently as 28,000 years ago. Estimates of when 
Neandertal first appeared in Europe are far less precise but many scientists believe it may have been as long as 
300,000 years ago. Although they are frequently depicted as stocky and brutish individuals, Neanderthals cared for 
their sick and injured, fashioned stone tools, used fire, lived and hunted in social units, and ritually buried their 
dead. 
 
As far as we know, Neanderthals did not inhabit regions far outside the European continent. If modern Europeans 
descended from Neanderthals, you would expect that Neanderthals would be more closely related to modern 
European populations than to any other modern human population in the world. Based on your “Modern Human vs. 
Neandertal” data, does it appear as though Europeans or any other modern world population descended from the 
Neanderthals? Explain. 
 
 
 
 
 
 
 
 
 
3.  Human - Neandertal divergence 
How many years ago did the common ancestor of modern humans and Neanderthals live? In the equation below, 
use the average number of differences (mutations) you found between modern humans and Neanderthals and your 
calculated mutation rate to estimate this number.  
 
      ______  years 
   ____mutations  x        = _______ years 
         mutation 
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Name________________________________________ 

        Date  _________________  Period_________________ 

 
4.  Did Neanderthals contribute to the modern human mtDNA gene pool? 
A gene pool is the collection of all genes in a population. Members of a single gene pool would be expected to 
have fewer differences between them than would be expected between members of different gene pools. Did 
Neanderthals have a separate gene pool from that of modern humans? Could Neanderthals have contributed their 
mitochondrial DNA to the gene pool of modern humans? Use the comparisons below (4a through 4e) to answer this 
question. 
 

a.  Average difference between Neanderthals  =  _______ 
 

b.  Average difference between modern humans and Neandertal =  _______ 
 

c.  Average difference between modern humans  =  _______ 
 

d.  The closest modern human/Neandertal alignment discovered by your class showed ______ differences. 
 

e.  The two most divergent modern humans discovered by your class showed   _________ differences. 
 

f.  Do you think the Neanderthals used in this study are members of a single gene pool (assume that 
modern humans are of a single gene pool)? Explain. 

  
 
 
 
 

 
 
 
 

g.  Do you think Neanderthals contributed their mitochondrial DNA to the modern human mtDNA gene 
pool? What other data would you want to answer this question? 

 
 
 
 
 
 
 
5.  A molecular clock based on chimpanzee/hominid divergence  
Based on the fossil record, scientists believe that chimpanzees and modern humans may have diverged 5,000,000 
years ago.  
 

a.  Would the molecular clock be different if you used the time since chimpanzees and modern humans 
evolved to determine the mutation rate? Calculate a new mutation rate using the formula below and 
the 5 million year divergence estimate.  

 
   5,000,000 years 
      =   _________ years/mutation 
       ___ mutations 
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Name________________________________________ 

        Date  _________________  Period_________________ 

 
 b.  Is this value different than the one you calculated based on “Modern Human vs. Modern Human” 

differences? Explain. 
 
 

        c.  Using the mutation rate you calculated in 5a, when did “Mitochondrial Eve,” the mitochondrial 
ancestor of all modern humans, live? Use the formula below for this calculation.  

       
________ years 

____ mutations      x      =      ________ years 
mutation 

 
How does this estimate compare with the value you used to calculate a molecular clock in Problem 1?  
 

 
        d.  Using the same molecular clock (calculated in 5a), when did Neanderthals and modern humans 

diverge and how does this estimate compare with the value you calculated in Problem 3? 
 

________ years 
___ mutations      x      =      ________ years 

mutation 
 
 

 
 
 
        e.  How many mutations would you need between chimpanzee and modern humans to give the 

mutation rate you calculated in Problem 1?  Use the equation below for your calculation. 
 

 
   5,000,000 years 
      =   _______ years/mutation 
       x mutations 
 
    

x = _____  mutations 
 

         How does this number compare with the average number of SNPs your class found for the 
 “Modern Human vs. Chimpanzee” comparisons and how can you account for any discrepancy? 

 
 
 

 
        f. Which mutation rate might be more accurate, that derived from the modern human/modern human 

comparisons or that derived from the chimpanzee/modern human comparisons? Explain. 
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Sequencing Activity Two: 

Determining your mtDNA Haplogroup 

 
Note: This exercise provides information about deep ancestry and ancient human migration only.  It is not meant to 
provide information about genealogy, family history, heredity, race, or any other classification. 
 

BLASTing your mtDNA Sequence 

1. Open up an Internet browser window. 
(This might be Internet Explorer, Safari, 
Firefox, or Netscape Navigator, etc.) 

 
 
 
 

2. In the address box, type in the following 
URL: http://www.ncbi.nlm.nih.gov/  
The National Center for Biotechnology 
Information page will open.  NCBI is a 
database of genome sequences and 
biomedical research articles. 

 
 

3.  On right side of home page under 
“Popular Resources”, click on: BLAST 
 
 
 
 
 
 
 
 

 
 
 

4. Scroll down to the bottom of the BLAST 
page.  Under Specialized BLAST, click on:  
Align two (or more) sequences using BLAST 
(bl2seq) 
 
 
 
 
 
 
 
 
 

 

5. In white box under Enter Query 
Sequence, copy and paste your sequence. 
Use the text file of your sequence, which 
should contain about 400 GATC letters.  Be 
careful not to take any descriptive text other 
than GATC. 

 

6. In white box under Enter Subject 
Sequence, type the accession # for the 
Cambridge Reference Sequence: 
NC_012920 
 
 
 

 

Enter your sequence here Enter NC_012920 here 
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7. Click on the BLAST button at the bottom of 
the page 
 
  
8. When the results appear, click on 
Formatting Options at the top the page. 
 
 
 
 

 

9. Change the Alignment View pull-down 
menu from Pairwise to Query-anchored with 
dots for identities 
 
 
 
 
 
 

 

10. Click on “Reformat” in the upper right 
corner. 
 

 

11. At the bottom of the page, your sequence 
(Query) will appear aligned with the 
Cambridge Reference Sequence 
(NC_012920). 
 
Dots indicate that the sequences match.  
Point mutations are indicated with a letter.   
 
For example, as position 16278, the CRS 
indicates that a C should be there.  But this 
sequence has a T in that location.  A C has 
been replaced by a T. 
 

 

12. Catalog all the mismatches between your 
sequence and the CRS. 
You will have to count across the rows to find 
the exact position of each mutation. 
Note the nucleotide position number and the 
nucleotide change  

 
In the sequence above, point mutations would be written as: 

16378T 
16311C 
16362C 

  
To determine your haplogroup, proceed to the exercise on the next page.
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Using your SNPs to Determine your Haplogroup 

1. Open up an Internet browser window. (This might be 
Internet Explorer, Safari, Firefox, or Netscape 
Navigator, etc.) 

 
 

2. In the address box, type in the following URL: 
http://nnhgtool.nationalgeographic.com/classify/index.h
tml 
This is a database from the Genographic Project, 
sponsored by National Geographic.  It contains mtDNA 
SNP data from hundreds of thousands of people from 
all around the world. 
 

 
 

3.  When the link opens, scroll to the bottom of the 
page and you will see a white box.   
 
Type in the nucleotide position number and the 
nucleotide change for all the SNPs that you found in 
your mtDNA sequence.   
 
Type one per line, then click “submit”. 
 

 

4. The results will appear with a determination of your 
haplogroup for each SNP.  If more that one haplogroup 
appears, the program will make a call for you. 
 
For example, haplogroup H is called here, even though 
one of the SNPs could belong to haplogroup HV.   
 
The database is continuing to grow and is updated 
frequently.  This is an active area of research. 
 

 

5. See page 32 for more information on haplogroups. 
 
In addition, you can research your haplogroup and 
learn all about your deep ancestry.  There are many 
websites available for this purpose.  A few are listed 
here: 

 
The Genographic Project: 
http://education.nationalgeographic.com/education/coll
ections/genographic/?ar_a=1 
 
Mitomap: 
http://www.mitomap.org/MITOMAP 
 
Genebase: 
http://www.genebase.com/learning/ 
 
World Families: 
http://www.worldfamilies.net/reverence_mtDNA 
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Human mtDNA Migrations 
 

The map below shows the branch point for each haplogroup and it’s global spread. 
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http://www.mitomap.org/pub/MITOMAP/MitomapFigures/WorldMigrations.pdf 

Content made available through a Creative Commons Attribution 3.0 License. 
 

 
Major Haplogroups 

For a listing of all subgroups, see http://www.mitomap.org 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
My haplogroup is _________.   
It branched off from haplogroup ____________   in _________________________(country).   
This happened _____________________ years ago. 

Haplogroup Possible.time.of.origin Possible.place.of.origin.(branch.point)
L1,$L2,$L3 130,000$($170,000$years$ago Central$Africa
N 71,000$years$ago East$Africa$or$Asia
M 60,000$years$ago North$Africa$or$South$Asia
I 30,000$years$ago Caucasus$or$Northeast$Europe
J 45,000$years$ago Near$East$or$Caucasus
K 16,000$years$ago Near$East
H 35,000$years$ago Western$Asia
T 17,000$years$ago Mesopotamia
V 15,000$years$ago Iberia$and$moved$to$Scandavia
W 25,000$years$ago Northeast$Europe$or$Northwest$Asia
X 30,000$years$ago Northeast$Europe
A 50000$years$ago Asia
B 50000$years$ago East$Asia
C 60,000$years$ago Central$Asia
D 50000$years$ago East$Asia
F 40000$years$ago Asia
G 35000$years$ago East$Asia
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Life Technologies & Applied Biosystems / BABEC Educational PCR Kits 
 
 
 
 
 

 
For Research Use Only. Not for use in diagnostic procedures. 

 
NOTICE TO PURCHASER: LIMITED LICENSE 
 
A license under U.S. Patents 4,683,202, 4,683,195, and 4,965,188 or their foreign counterparts, owned by Roche 
Molecular Systems, Inc. and F. Hoffmann-La Roche Ltd (Roche), for use in research and development, has an up-
front fee component and a running-royalty component.  The purchase price of the Lambda PCR, Alu PV92 PCR, 
PCR Optimization, D1S80 PCR, and Mitochondrial PCR Kits includes limited, non-transferable rights under the 
running-royalty component to use only this amount of the product to practice the Polymerase Chain Reaction (PCR) 
and related processes described in said patents solely for the research and development activities of the purchaser 
when this product is used in conjunction with a thermal cycler whose use is covered by the up-front fee component. 
Rights to the up-front fee component must be obtained by the end user in order to have a complete license. These 
rights under the up-front fee component may be purchased from Applied Biosystems or obtained by purchasing an 
authorized thermal cycler. No right to perform or offer commercial services of any kind using PCR, including without 
limitation reporting the results of purchaser’s activities for a fee or other commercial consideration, is hereby 
granted by implication or estoppel. Further information on purchasing licenses to practice the PCR process may be 
obtained by contacting the Director of Licensing at Applied Biosystems, 850 Lincoln Centre Drive, Foster City, 
California 94404 or at Roche Molecular Systems, Inc., 1145 Atlantic Avenue, Alameda, California 94501. 

Use of this product is covered by US patent claims and corresponding patent claims outside the US. The purchase 
of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using 
only this amount of product for the purchaser’s own internal research. No right under any other patent claim (such 
as the patented 5’ Nuclease Process claims) and no right to perform commercial services of any kind, including 
without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is 
conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses require a 
separate license from Roche. Further information on purchasing licenses may be obtained by contacting the 
Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA. 

 
TRADEMARKS: 

Applied Biosystems, AB (Design), GeneAmp, and Primer Express are registered trademarks and Veriti and 
VeriFlex are trademarks of Applied Biosystems Inc. or its subsidiaries in the US and/or certain other countries. 

AmpliTaq is a registered trademark of Roche Molecular Systems, Inc. All other trademarks are the sole property of 
their respective owners. 

 
© Copyright 2001, Applied Biosystems. All rights reserved. 
 
 
 


